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I-56127 Pisa, Italy

E-mail: dino.leporini@df.unipi.it

Received 23 April 2004, in final form 22 July 2004
Published 27 August 2004
Online at stacks.iop.org/JPhysCM/16/6609
doi:10.1088/0953-8984/16/36/026

Abstract
The finite length of polymer chains affects both the static and the relaxation
properties of the density of the melt state. These have been investigated by
molecular-dynamics simulations of a Lennard-Jones model with fixed bond
length. Under isothermal–isobaric conditions the density increases with the
molecular weight. A suitable Voronoi tessellation reveals the extra free volume
around the chain ends and shows that it is strongly localized within the
first end monomer. Simple arguments are given for interpreting the main
changes of the monomer radial distribution function and the corresponding
static structure factor when the chain length is increased. As to the relaxation
aspects of the density, it is found that the structural relaxation time increases
with the molecular weight, which is interpreted as a signature of the well-known
corresponding increase of the glass transition temperature.

1. Introduction

The region surrounding the chain ends (CE) of polymer chains with finite length is characterized
by imperfect ordering and packing [1]. Therefore, each CE possesses more free volume than if
it were chemically bound within a continuous chain. As expected, this produces a plasticizing
effect which enhances the mobility. The present paper aims at characterizing the changes of
both the static and the fluctuation properties of the density when the relative fraction of CEs is
changed, i.e. when the molecular weight M is changed.
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Fox and Flory pioneered the study of the disorder introduced by the end groups of a linear
chain (polystyrene) and evidenced by means of dilatometric measurements that the number
density ρ depends on the number of monomers per chain M as [2]

ρ(M) =
(

1

ρ∞
+

2Ve

M

)−1

(1)

where ρ∞ is the number density in the limit of infinitely long chains and Ve is interpreted
as the extra free volume per CE. Fox and Flory also recognized that disrupting the local
configurational order imparts an extra mobility affecting the relaxation, and anticipated the
well-known phenomenological relation between the glass transition temperature Tg and the
chain length

Tg(M) = Tg∞ − C

M
(2)

where C is a positive constant and Tg∞ is the glass transition temperature in the limit of
infinite length. The above equation was rationalized by assuming that the fractional free
volume f (M) is nearly constant at the glass transition temperature Tg, f (M) � 1/40, so
that the free volumes contributed by CEs have to be compensated by an additional thermal
contraction [3–6]. Although it has been pointed out that the glass is not a true iso-free-
volume state [7], and improved expressions for the chain length dependence of Tg have been
derived from thermodynamic considerations [7, 8], the role played by the CEs in the polymer
dynamics has been extensively studied over the years by several experiments[9–25], theoretical
approaches [26–28] and numerical simulations [29–38]. Kremer and Grest first noticed by
using a bead–spring model and studying the chain length dependence of the statics and the
dynamics that the terminal monomers exhibit faster dynamics than the central ones [29, 30].
More recent Monte Carlo studies also reached the same conclusions [31, 32]. Several issues
have been addressed, including the effect of pressure on the relation between the glass transition
temperature and the molecular weight of equation (2) [10], antiplasticization [13], the diffusion
of small molecule penetrants in polymers [14], the very interesting case of the dendrimers and
hyperbranched polymers having an ever-increasing number of chain ends [9, 16, 20, 28], the
interfacial dynamics of blends [11, 12, 21, 33] and thin polymer films [15, 22, 27], the diffusion
in homopolymersand blends [17, 18, 35, 36], the energy of interaction between the free volume
and the polymer units [34], the rheology of food and biopolymers [23].

We present new results drawn from extensive classical molecular-dynamics (MD)
simulations carried out on a melt of unentangled linear chains described by means of a Lennard-
Jones model with fixed bond length, which captures the essential features of the chain end
influence. The model has already been extensively investigated over a wide temperature and
pressure range to evidence scaling properties and the mutual role of the thermal and the density
effects [47].

We profited from previous studies on the chain length dependence of the polymer
dynamics [29–32] and structure [39–46].

As a novel feature we address explicitly the influence of the CE free volume on both the
statics and the structural relaxation to investigate the microscopic origin of equation (2).

Remarkably, the efficient packing of the spherical beads limits the extra free volume due to
the CEs and gives insight into the sensitivity of the dynamics to this disorder effect. However,
in more realistic models the packing of different polymer sites may be less efficient due to the
poor interlocking of possible screening groups [41].

The paper is organized as follows. In section 2 the model and the numerical methods are
detailed. In section 3 the results are presented and discussed. The conclusions are summarized
in section 4.
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Figure 1. The dependence of the density on the molecular weight M. The superimposed curve is
the fit with equation (1) with ρ∞ = 0.961 ± 0.002 and Ve = 0.0905 ± 0.0002.

2. Numerical methods

We investigated systems of N linear chains with fixed bond length and M monomers (beads)
each. The (M, N) pairs under investigation were (3, 667), (5, 200), (7, 200), (10, 200),
(15, 220), (22, 300) and (30, 300). The sample is confined in a cubic box with periodic
boundary conditions. To handle the boundary conditions, the minimum image convention is
adopted. The interaction between nonbonded monomers occurs via the Lennard-Jones (LJ)
potential

U(r) = 4ε
[
(σ/r)12 − (σ/r)6] + Ucut. (3)

The potential is cut off at rcut = 2.5σ and appropriately shifted by Ucut so as to make it vanish
at that point and be continuous everywhere.

Neighbouring monomers in the same chain are constrained to a distance b = 0.97σ by
using the RATTLE algorithm [48]. From now on, LJ units are adopted with the Boltzmann
constant kB = 1. The samples are equilibrated under Nosé–Andersen [48] dynamics at the
prescribed temperature and pressure until the average displacement of the chains’ centres of
mass is as large as twice the mean end-to-end distance. Data are collected during production
runs in microcanonical conditions, by using a Verlet algorithm in velocity form. The time step
is �t = 2.5 × 10−3. No adjustment of the temperature, e.g. by rescaling the velocities, was
needed during the production run.

The system is studied at pressure P = 2.0 and temperature T = 1.2. The results have
been averaged over ten independent runs at least.

3. Results and discussion

3.1. Static effects

In figure 1 the dependence of the density on the chain length M is shown. It is fitted quite
well by equation (1). Ve in equation (1) has to be interpreted as the extra free volume around
one CE with respect to that present around any other segment of the chain; the best fit value is
Ve = 0.0905 ± 0.0002, i.e. about 17% of the bead volume.
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Figure 2. The average volume of the Voronoi polyhedron around the bead located at the n position
along the chain (symmetric positions with respect to the centre of the chain are averaged over:
n � M/2). Note the larger volume of the polyhedra surrounding the CEs (n = 1). The average
excess volume is �V = 0.0435 ± 0.0015. Inset: the chain length dependence of the Voronoi
volume of the inner beads Vinner. The superimposed curve is equation (4) with �V (M) = �V ∗.
The best fit value is �V ∗ = 0.0436 ± 0.0001.

To characterize the structural disorder of the system we resorted to the Voronoi
tessellation [49, 50]. Voronoi tessellation partitions the space into convex polyhedra. For
a molecular system the Voronoi polyhedron is the region of space around an atom (in our
case one bead), such that each point in this region is closer to the atom than to any other
atom of the system. Figure 2 shows how the volume of the Voronoi polyhedra depends on the
position of the bead along the chain. It is clearly seen that an excess volume is located at the
CEs, whereas the polyhedra around all the other beads have almost identical volumes. Excess
volume around the CEs was also reported from atomistic simulations of polymers [35, 49, 50].
The present polymer model indicates that, even if the packing of the beads is as expected better
than that of more constrained atomistic structures (see e.g. [35, 49]), additional space is still
found around the chain ends. We also see that flexible chains assign the extra free volume to
the end monomers. An increased chain stiffness, on the other hand, distributes it also across
adjacent monomers [35].

Since the average volume of the Voronoi polyhedra is by definition equal to the volume
per particle, we may write

Vinner(M) = 1

ρ(M)
− 2�V (M)

M
(4)

where Vinner(M) is the average volume of the polyhedra located around the inner monomers
and �V (M) is the excess volume of the polyhedra located around CEs. By inspecting figure 2,
�V (M) is found to be slightly dependent on M with average value �V = 0.0435 ± 0.0015.
If the M dependence of �V is neglected and equation (1) is replaced in equation (4), the latter
yields a linear dependence of Vinner on M−1. Indeed, the plot of Vinner versus M−1 is remarkably
linear (see the inset in figure 2) and the best fit with equation (4), setting �V (M) = �V ∗
and assuming (1), yields �V ∗ = 0.0436 ± 0.0001. Note that �V ∗ �= Ve, i.e. the excess free
volume is different from the excess Voronoi volume. The difference is due to the fact that the
available free volume around one tagged bead is also shared with the surrounding ones, and
the boundary of the Voronoi polyhedron centred at the tagged bead cuts that free volume into
two regions, one inside the polyhedron and the other outside. Since the bead volume is nearly
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Figure 3. The radial distribution function gmon(r) of the monomers (top) and static structure factor
Smon(q) (bottom) for all the chain lengths investigated. The insets show a detailed view of the
maxima of gmon(r) (top) and Smon(q) (bottom). Symbols refer to M = 3 (circles), 5 (squares),
15 (diamonds), 30 (triangles). On increasing the chain length the maximum of gmon(r) decreases
whereas the maximum of Smon(q) increases and shifts to higher q values. See the text for details.

constant, a small variation δVfree in the free volume leads to a variation δVvoronoi of the Voronoi
volume which should be slightly less than one half as small: δVvoronoi ∼ (1 − ε)/2δVfree. The
factor ε > 0 depends on the detailed geometry and on the ratio between the Voronoi volume
and the bead volume; we find ε � 0.04. Purely geometrical procedures in terms of Delauney
tessellation to determine Ve are possible if the excess free volume Ve substantially exceeds the
free volume of the other monomers [35]. However, figure 2 suggests that this does not occur
in the present study due to the good packing, and in this case possible corrections must also
account for the softness of each bead due to the LJ interactions.

Figure 3 shows the radial distribution function gmon(r) of the monomers without the delta
function contributions due to the bonded nearest neighbours of each bead. It is seen that the
maximum of gmon(r) decreases with the chain length. No changes are observed beyond the first
shell of nearest neighbours. This is an interesting feature in that the density increases with the
chain length (see figure 1) and one expects more short range order. A simple argument shows
that the decrease of the maximum follows from the different connectivities of the inner and
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Figure 4. The chain length dependence of the number of nearest-neighbour monomers Nmon(M)

(equation (5)) from MD simulations (filled circles). The number of nearest-neighbour atoms
NLJ(M) for the Lennard-Jones monatomic liquid with the same density as the polymer melt with
chain length M is also shown (empty squares) together with the approximation Ñ (M) (equation (6))
(empty circles). The slopes of Nmon(M) and Ñ(M) are about 2.4 and 2.0, respectively. See the
text for details.

end beads. Let us neglect the connectivity of the polymer chain with length M and consider
the radial distribution function gLJ(r) of the Lennard-Jones monatomic liquid with the same
average density. gLJ(r) is conveniently calculated by using the Weeks–Chandler–Anderson
(WCA) theory [51–53]. The average number of nearest neighbours for the melt of chains with
length M is given by

Nmon(M) = 4πρ

∫ rmin

0
dr r2gmon(r). (5)

rmin is the location of the first minimum of gmon(r). Let NLJ(M) be the same quantity for the
monatomic Lennard-Jones liquid having the density of the melt of chains with length M; i.e. the
analogue of equation (5) is written with gmon(r) being replaced by gLJ(r) which is integrated
up to its first minimum. Figure 4 shows that Nmon(M) is virtually linear with 1/M and has
a slope 2.42 whereas NLJ(M), due to the small change of the density of the polymer melts
with different chain lengths, is almost constant, NLJ(M) � 12. Nmon(M) has two different
terms. One, ascribed to the inner beads, has weight (M − 2)/M and may be approximated by
NLJ(M)− 2 due to the missed contribution to gmon(r) of the two bonded nearest neighbours. A
second term with weight 2/M comes from the end beads and is approximated by NLJ(M)− 1.
Overall, Nmon(M) may be approximated by

Ñ (M) = NLJ(M) +
2

M
− 2. (6)

Ñ (M) is compared to Nmon(M) in figure 4. The deviations do not exceed 15%. The slope of
Ñ (M) versus 1/M is about 2, to be compared with the slope 2.42 of Nmon(M).

Figure 3 also shows, for all the chain lengths investigated, the monomer static structure
factor Smon(q) defined by the expression [53]

Smon(q) = 1 + 4πρ

∫ ∞

0
[gmon(r) − 1]

sin(qr)

qr
r2 dr. (7)

It is seen that when the chain length increases the main peak of Smon(q), Smax, located at qmax

increases as well and shifts to higher q values. The changes become small at the highest lengths
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Figure 5. A plot of the self-part of the intermediate scattering function Fs at q = qmax (shaded
symbols) and q = qmin (open symbols). Inset: a plot of − ln[Fs] at the same values of q.

investigated. An approximate relation has been derived relating Smax, qmax, and the width of
the main peak �q , defined as the separation between the two adjacent nodes of [Smon(q) − 1]
embracing qmax [53]:

Smax
∼= 3qmax

4�q

(
1 − 6π2ρ

q3
max

)
. (8)

By considering M = 3 and 30 one finds Smax = 2.21 and 2.24 respectively, to be compared
with 2.2 and 2.26 from the simulation.

3.2. Relaxation effects

To characterize the relaxation dynamics of the density we evaluated the self-part of the
intermediate scattering function:

Fs(q, t) = 〈exp[iq · (R(t) − R(0))]〉 (9)

where R(t) is the position of the monomer at time t and the brackets denote a suitable
average over all the monomers. In figure 5, Fs(q, t) is plotted at qmax and qmin, which are
respectively the positions of the maximum and of the first minimum of Smon(q). At late
times the scattering functions Fs(q, t) exhibit a stretched-exponential decay with stretching
parameters 0.7 � β � 0.75, weakly decreasing with the molecular weight. To characterize
the decay of Fs(q, t), we define the structural relaxation times τα and τmin as the area below
Fs(qmax, t) and Fs(qmin, t), respectively. The related integrals were evaluated numerically over
the simulated time window. Both the quality of the data and the limited stretching made the
above definition reliable.

The plots of τα and τmin versus the chain length are shown in figure 6. They both increase
with the chain length. As qmin > qmax, τmin is more affected by very local relaxation processes
than τα. Then, it is not surprising that the former exhibits a weaker length dependence, as
shown in figure 6.

The increase of the density-fluctuation timescales is consistent with the well-known
increase of the glass transition temperature on increasing the polymer molecular weight; see
equation (2) or the more complex expression provided by the entropy approach [7, 8]. Let us
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Figure 6. The molecular weight dependence of the structural relaxation time τα (circles) and τmin
(squares). The superimposed curves are fits with equation (11); the fit parameters are Dα = 0.70,
Dmin = 0.30, Eα = 1.08, Emin = 0.87.

consider the usual Vogel–Fulcher law describing the temperature dependence of the relaxation
times, i.e.

τ (T ) = A exp

(
B

T + C − Tg

)
(10)

where A, B, C are constants. For simplicity, one neglects any molecular weight dependence
other than that of Tg as given by equation (2). Far above the glass transition one finds

τ (M) � D exp

(
− E

M

)
(11)

where D, E depend only on the temperature.
Figure 6 shows that equation (11) accounts for the observed trends of both the structural

relaxation time τα and τmin with the length of the chain. However, we are aware that deviations
from equation (2) (on which equation (11) is based) are expected for short chains. Moreover,
alternatives to equation (2) with more complicated M dependence were found by the entropy
approach [7, 8]. Overall, higher quality data spanning a wider range of chain lengths are
needed to assess the weight dependence of the structural relaxation time.

4. Conclusions

We investigated the effects of the finite length of polymeric chains in the melt state by MD
simulation of a Lennard-Jones model with fixed bond length. Both static and relaxation aspects
were studied. It is found that under isothermal–isobaric conditions the density increases with
the chain length according to equation (1). The Voronoi tessellation revealed the extra free
volume which is available around the chain ends. This extra volume is highly localized within
the first end monomer. Simple arguments are given for interpreting the main changes of the
monomer radial distribution function and the corresponding static structure factor when the
chain length is increased. As to the relaxation aspects of the density, it is found that the structural
relaxation time increases with the molecular weight, which is interpreted as a signature of the
well-known corresponding increase of the glass transition temperature.
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